Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We provide a generalization of Jouanolou duality that is applicable to a plethora of situations.The environment where this generalized duality takes place is a new class of rings, that we introduce and call weakly Gorenstein rings.As a consequence, we obtain a new general framework to investigate blowup algebras.We use our results to study and determine the defining equations of the Rees algebra for certain families of ideals.more » « lessFree, publicly-accessible full text available July 3, 2026
-
Free, publicly-accessible full text available January 1, 2026
-
If I is an ideal in a Gorenstein ring S, and S/I is Cohen-Macaulay, then the same is true for any linked ideal I ; but such statements hold for residual intersections of higher codimension only under restrictive hypotheses, not satisfied even by ideals as simple as the ideal Ln of minors of a generic 2 × n matrix when n > 3. In this paper we initiate the study of a different sort of Cohen-Macaulay property that holds for certain general residual intersections of the maximal (interesting) codimension, one less than the analytic spread of I. For example, suppose that K is the residual intersection of Ln by 2n − 4 general quadratic forms in Ln. In this situation we analyze S/K and show that In−3(S/K) is a self-dual maximal Cohen-Macaulay S/K-module with linear free resolution over S. The technical heart of the paper is a result about ideals of analytic spread 1 whose high powers are linearly presented.more » « less
-
If is an ideal in a Gorenstein ring , and is Cohen-Macaulay, then the same is true for any linked ideal ; but such statements hold for residual intersections of higher codimension only under restrictive hypotheses, not satisfied even by ideals as simple as the ideal of minors of a generic matrix when . In this paper we initiate the study of a different sort of Cohen-Macaulay property that holds for certain general residual intersections of the maximal (interesting) codimension, one less than the analytic spread of . For example, suppose that is the residual intersection of by general quadratic forms in . In this situation we analyze and show that is a self-dual maximal Cohen-Macaulay -module with linear free resolution over . The technical heart of the paper is a result about ideals of analytic spread 1 whose high powers are linearly presented.more » « less
-
null (Ed.)Abstract We prove duality results for residual intersections that unify and complete results of van Straten,Huneke–Ulrich and Ulrich, and settle conjectures of van Straten and Warmt. Suppose that I is an ideal of codimension g in a Gorenstein ring,and {J\subset I} is an ideal with {s=g+t} generators such that {K:=J:I} has codimension s . Let {{\overline{I}}} be the image of I in {{\overline{R}}:=R/K} . In the first part of the paper we prove, among other things, that under suitable hypotheses on I , the truncated Rees ring {{\overline{R}}\oplus{\overline{I}}\oplus\cdots\oplus{\overline{I}}{}^{t+1}} is a Gorenstein ring, and that the modules {{\overline{I}}{}^{u}} and {{\overline{I}}{}^{t+1-u}} are dualto one another via the multiplication pairing into {{{\overline{I}}{}^{t+1}}\cong{\omega_{\overline{R}}}} . In the second part of the paper we study the analogue of residue theory, and prove that, when {R/K} is a finite-dimensional algebra over a field of characteristic 0 and certain other hypotheses are satisfied, the socle of {I^{t+1}/JI^{t}\cong{\omega_{R/K}}} is generated by a Jacobian determinant.more » « less
An official website of the United States government

Full Text Available