skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ulrich, Bernd"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We provide a generalization of Jouanolou duality that is applicable to a plethora of situations.The environment where this generalized duality takes place is a new class of rings, that we introduce and call weakly Gorenstein rings.As a consequence, we obtain a new general framework to investigate blowup algebras.We use our results to study and determine the defining equations of the Rees algebra for certain families of ideals. 
    more » « less
    Free, publicly-accessible full text available July 3, 2026
  2. Free, publicly-accessible full text available January 1, 2026
  3. If I is an ideal in a Gorenstein ring S, and S/I is Cohen-Macaulay, then the same is true for any linked ideal I ; but such statements hold for residual intersections of higher codimension only under restrictive hypotheses, not satisfied even by ideals as simple as the ideal Ln of minors of a generic 2 × n matrix when n > 3. In this paper we initiate the study of a different sort of Cohen-Macaulay property that holds for certain general residual intersections of the maximal (interesting) codimension, one less than the analytic spread of I. For example, suppose that K is the residual intersection of Ln by 2n − 4 general quadratic forms in Ln. In this situation we analyze S/K and show that In−3(S/K) is a self-dual maximal Cohen-Macaulay S/K-module with linear free resolution over S. The technical heart of the paper is a result about ideals of analytic spread 1 whose high powers are linearly presented. 
    more » « less
  4. If I I is an ideal in a Gorenstein ring S S , and S / I S/I is Cohen-Macaulay, then the same is true for any linked ideal I I’ ; but such statements hold for residual intersections of higher codimension only under restrictive hypotheses, not satisfied even by ideals as simple as the ideal L n L_{n} of minors of a generic 2 ×<#comment/> n 2 \times n matrix when n > 3 n>3 . In this paper we initiate the study of a different sort of Cohen-Macaulay property that holds for certain general residual intersections of the maximal (interesting) codimension, one less than the analytic spread of I I . For example, suppose that K K is the residual intersection of L n L_{n} by 2 n −<#comment/> 4 2n-4 general quadratic forms in L n L_{n} . In this situation we analyze S / K S/K and show that I n −<#comment/> 3 ( S / K ) I^{n-3}(S/K) is a self-dual maximal Cohen-Macaulay S / K S/K -module with linear free resolution over S S . The technical heart of the paper is a result about ideals of analytic spread 1 whose high powers are linearly presented. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
    Abstract We prove duality results for residual intersections that unify and complete results of van Straten,Huneke–Ulrich and Ulrich, and settle conjectures of van Straten and Warmt. Suppose that I is an ideal of codimension g in a Gorenstein ring,and {J\subset I} is an ideal with {s=g+t} generators such that {K:=J:I} has codimension s . Let {{\overline{I}}} be the image of I in {{\overline{R}}:=R/K} . In the first part of the paper we prove, among other things, that under suitable hypotheses on I , the truncated Rees ring {{\overline{R}}\oplus{\overline{I}}\oplus\cdots\oplus{\overline{I}}{}^{t+1}} is a Gorenstein ring, and that the modules {{\overline{I}}{}^{u}} and {{\overline{I}}{}^{t+1-u}} are dualto one another via the multiplication pairing into {{{\overline{I}}{}^{t+1}}\cong{\omega_{\overline{R}}}} . In the second part of the paper we study the analogue of residue theory, and prove that, when {R/K} is a finite-dimensional algebra over a field of characteristic 0 and certain other hypotheses are satisfied, the socle of {I^{t+1}/JI^{t}\cong{\omega_{R/K}}} is generated by a Jacobian determinant. 
    more » « less